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Abstract. The dispersions of dipolar (Damon–Eshbach modes) and exchange-dominated spin
waves are calculated for in-plane-magnetized thin and ultrathin cubic films with (111) crystal
orientation and the results are compared with those obtained for the other principal planes. The
properties of these magnetic excitations are examined from the point of view of Brillouin light
scattering experiments. Attention is paid to the study of the spin-wave frequency variation as a
function of the magnetization direction in the film plane for different film thicknesses. Interface
anisotropies and the bulk magnetocrystalline anisotropy are considered in the calculation. A
quantitative comparison between an analytical expression obtained in the limit of small film
thickness and wave vector and the full numerical calculation is given.

1. Introduction

The study of spin waves in magnetic films with cubic symmetry has proved to be very
useful for determining magnetic anisotropy constants. Most previous studies, however,
have only considered (100)- and (110)-oriented films [1–8]. For the (111) orientation, spin-
wave frequency calculations have not been presented so far, probably due to the more
complicated algebra involved and due to the lack of experimental data. Recently, an
appreciable directional in-plane dependence of the spin-wave frequency has been observed
by means of ferromagnetic resonance (FMR) in thin Fe(111) films and Fe(111)/Cu(111)
multilayers [9] as well as by means of Brillouin light scattering [10] (BLS) in ultrathin
Ni films. This latter technique, which is based on the inelastic scattering of photons by
thermally excited spin waves (thermal magnons), has proved to be a very powerful tool for
investigating magnetic properties in magnetic films and multilayers through the detection
of spin waves with non-zero wave vector. From BLS measurements of the spin-wave
frequencies as a function of the direction and magnitude of the in-plane wave vector,q‖,
and the direction and strength of the externally applied field, magnetic parameters such as
the in-plane anisotropy constants can be determined. The capability of BLS for determining
the interface anisotropy constants is particularly relevant for the (111) plane of a cubic
crystal. This is because torque measurements, like BLS ones, are always more sensitive to
high-order anisotropies, such as the sixfold one in the (111) orientation, than static methods,
which yield at best a very weak directional dependence of the free energy on the (111) plane,
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since, for an in-plane-magnetized film, the first-order magnetocrystalline anisotropy gives
an isotropic contribution [11].

The aim of this paper is to fill the gap existing in the literature concerning the
characteristics of the spin-wave spectrum of thin and ultrathin magnetic films with (111)
orientation. The very new experimental results obtained by means of BLS [10], which show
an appreciable in-plane directional dependence of the spin-wave frequency on the Ni(111)
plane, and the necessity of interpreting them in terms of the anisotropy constants have
motivated the theoretical study that we present here. The spin-wave frequency is calculated
in the dipole-exchange regime assuming an in-plane-magnetized Ni film and including both
interface and bulk anisotropy. This permits us to obtain the frequency dispersion as a
function of both the film thickness and the direction of propagation on the surface plane.

2. The calculation procedure

In order to calculate the spin-wave frequency in the case of an in-plane-magnetized (111)-
oriented cubic film, we make reference to a continuum model previously developed by one
of us for (100)- and (110)-oriented films, and we use the same type of nomenclature [1].
The geometry is defined such that thex-axis is normal to the film interfaces atx = 0
(upper interface) andx = −L (lower interface), while the applied field is taken along the
z-axis. The film is considered to be infinite in the plane and the spin-wave propagation
is assumed to be perpendicular to the applied field with a wave vectorq‖ defined by the
light scattering geometry. The calculation relies upon resolving the equation of motion
(the linearized Landau–Lifshitz torque equation and the magnetostatic Maxwell equations)
for the magnetic layer with appropriate boundary conditions. Inclusion of terms resulting
from exchange interaction yields six solutions for the dynamic components of the fields,
which are classified according to the wave-vector components perpendicular to the layer
(qxi, i = 1, 2, . . . ,6) [1]. From the magnetic and Rado–Weertman boundary conditions
at the film interfaces, a system of eight linear homogeneous equations in the fluctuating
fields inside(hxi) and outside the layer (hex1 andhex2) is obtained. The problem of finding
solutions for the propagating spin waves is therefore reduced to that of finding the zeros
of the 8× 8 boundary condition determinant. A computer program has been written to
search for the frequencies that correspond to the roots of this determinant. Although this
is a standard and well established procedure, it should be noted that the calculations are
a little bit more complicated when the (111) crystal orientation is considered, because of
the additional contributions in the secular equation given by the magnetocrystalline and
interface anisotropy fieldsHγ andHγ ′ (see below), which are zero in the (100) and (110)
orientations.

In the following we distinguish between volume and interface anisotropy contributions.
The former contains the magnetocrystalline anisotropy which originates from the coupling
of the magnetization to the crystallographic symmetry, while the latter is due to the lack
of translational symmetry along the film normal. These anisotropy fields shift the magnetic
excitation frequency. We point out that in this paper we only consider cubic anisotropy,
while the possible presence of non-cubic terms, such as uniaxial in-plane anisotropy of
magnetoelastic origin, is not taken into account.

For cubic crystals and referring to a Cartesian coordinate system aligned with the
principal crystallographic axes, the free energy associated with the volume anisotropy,Eani ,
is defined as

Eani = K1(α
2
xα

2
y + α2

xα
2
z + α2

yα
2
z ) (1)
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where theαi , i = x, y, z, are the direction cosines of the magnetization relative to the
crystallographic axes andK1 is the first non-vanishing-order magnetocrystalline anisotropy
constant for a cubic system. If spherical coordinates are introduced, the explicit forms for
Eani relative to the three principal crystal orientations are [1, 12]

(100) Eani = K1(cos2 θ sin2 θ + sin4 θ cos2 φ sin2 φ) (2)

(110) Eani = K1

4

{
cos4 θ + sin4 θ [sin4 φ + sin2(2φ)] + sin2(2θ)

[
cos2 φ − 1

2
sin2 φ

]}
(3)

(111) Eani = K1

{
1

3
cos4 θ + 1

4
sin4 θ −

√
2

3
sin3 θ cosθ cos(3φ)

}
. (4)

The azimuthal angleφ, which defines the magnetization direction in the film plane, is
measured with respect to the crystallographic (001) axis of the layer plane for the (100)
and the (110) orientations while for the (111) orientation it is measured with respect to the
(1̄10) axis. θ is the polar angle.

As regards the interface free energy,Einter , it can be expressed in the lowest symmetry
consistent with the symmetry of the respective surface plane as

(100) Einter = −ks cos2 θ + kp sin4 θ cos2 φ sin2 φ (5)

(110) Einter = −ks cos2 θ + kp sin4 θ cos2 φ (6)

(111) Einter = −ks cos2 θ − kp
√

2

3
sin3 θ cosθ cos(3φ). (7)

In equations (5)–(7),ks is the out-of-plane anisotropy constant whilekp is the first non-
vanishing term of the in-plane interface anisotropy. Forks > 0 the surface normal is an
easy axis, while forks < 0 the film plane is an easy plane of interface anisotropy. Please
note that equations (5)–(7) are similarly defined as the projection of the bulk anisotropies on
the respective surface plane. The above expressions for the in-plane interface free energy
are not unique, in the sense that one can also use other formulations, provided that the
crystal in-plane symmetry is correctly taken into account. We would like to emphasize
that the expressions for the interface free energy (equations (5)–(7)) need to describe the
dependence on the polar angleθ correctly, since due to the precession of the moments
an out-of-plane component in the dynamic magnetization exists which interacts with the
out-of-plane anisotropy field componentsHα andHβ (see below).

Table 1. The first non-vanishing interface anisotropy fields for in-plane-magnetized (100)-,
(110)- and (111)-oriented crystal.

Hα′ Hβ ′ Hγ ′

(100) − 2

M
(ks + 2kp cos2 φ sin2 φ)

2kp
M
(1− 8 cos2 φ sin2 φ) 0

(110) − 2

M
(ks + kp cos2 φ)

2kp
M
(2 sin2 φ − 1) 0

(111) − 2

M
ks 0 − kp

M

√
2 sin(3φ)

The volume (Hα, Hβ andHγ ) and interface (Hα′ , Hβ ′ andHγ ′ ) anisotropy fields for
an in-plane-magnetized film(θ = 90◦) can be easily obtained from equations (2)–(7) by
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applying the following formulae [8]:

Hα = ∂2

M ∂θ2
Eani Hα′ = ∂2

M ∂θ2
Einter (8)

Hβ = ∂2

M ∂φ2
Eani Hβ ′ = ∂2

M ∂φ2
Einter (9)

Hγ = ∂2

M ∂θ ∂φ
Eani Hγ ′ = ∂2

M ∂θ ∂φ
Einter (10)

whereM is the saturation magnetization. The first non-vanishing interface anisotropy fields
for the principal planes of a cubic crystal are reported in table 1.

The following theoretical results are a refinement of those reported in references [1]
and [8]. We do not want to describe each step of the calculation and therefore the reader is
invited to inspect the equations listed in the appendix. When the anisotropy fieldsHγ and
Hγ ′ are taken into account, the secular equation becomes a sixth-order polynomial equation
in the wave-vector component perpendicular to the layers,qx , rather than a bicubic equation
in q2

x , such as was used in reference [1]. As regards the linear system of eight homogeneous
equations, four of them are given by the Rado–Weertman boundary conditions applied at the
film interfaces which have to be modified if the (111) crystal orientation is considered, while
the remaining four homogeneous equations of the linear system, obtained from the continuity
of the parallel component of the fieldh and the normal component ofh+4πm at the film
interfaces, remain unchanged. We notice that if the values ofks andkp are not equal at the
two film interfaces, the anisotropy fields entering the Rado–Weertman boundary conditions
are different for the two film interfaces (x = 0 andx = −L). As shown in reference [1],
different values of the interface anisotropies on either side of the film result in different spin-
wave frequencies for the Damon–Eshbach mode and the exchange modes forq‖ and−q‖.
Therefore, in a BLS experiment the spin-wave frequencies obtained from the Stokes and the
anti-Stokes parts of the spectrum may differ in their absolute values. This can be utilized
for the separate determination of the interface anisotropy constants of the two interfaces.

3. Comparison between numerical and analytical calculations

In the previous section, we have presented the theoretical model that we use for the numerical
calculation of the spin-wave frequencies which are typically observed in a Brillouin light
scattering experiment. We note that, when dealing with ultrathin magnetic films where
only the Damon–Eshbach spin-wave mode can be detected, the problem of the complexity
of the numerical calculation can be overcome by use of a more straightforward analytical
procedure. Following the approach proposed by Stamps and Hillebrands [13], one can
treat the magnetization as uniform across the magnetic film, and if the product of the
film thicknessL and the wave vectorq‖ is small compared to unity, the frequency of the
Damon–Eshbach mode for an in-plane-magnetized sample can be expressed as [10](
ω

γ

)2

=
[(
H0+Hα + 2

L
Hα′ + 2A

Ms

q2
‖ + 4πMf (1− q‖L/2)

)
×
(
H0+Hβ + 2

L
Hβ ′ + 2A

Ms

q2
‖ + 2πMfq‖L sin2 α

)
−
(
Hγ + 2

L
Hγ ′

)2]
.

(11)

The parameterf is the demagnetization factor of ultrathin films, which forn > 1 is
approximatelyf = 1− 0.2338/n with n the number of monolayers [14]. Since the mag-
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netization is uniform across the film, the interface torques from the interface anisotropies
are converted into volume torques acting on the total film magnetization and the interface
anisotropy fields are converted into effective volume anisotropy fields weighed by 2/L, with
the factor of two counting the two interfaces of the film. Rado [15] and Gradmannet al [16]
give estimates for the range of validity of this assumption. Equation (11) contains both the
volume and the interface anisotropy fields and it can be easily applied to Brillouin scattering
experiments. We note that the termHγ + (2/L)Hγ ′ gives a non-vanishing contribution only
for a (111)-oriented crystal.

Figure 1. The magnetic field dependence of the Damon–Eshbach mode frequency for two (111)-
oriented Ni films, 60Å and 30Å thick. The continuous lines are calculated using equation (11)
while the dashed lines are calculated by means of the numerical procedure described in the text.
For the thicker Ni filmkp = 0.15 erg cm−2 andks = 0.375 erg cm−2, while for the thinner film
kp = 0.07 erg cm−2 andks = 0.210 erg cm−2. For both Ni films,K1 = −5.1× 104 erg cm−2.

We would now like to discuss the limit of applicability of equation (11) by means of
a comparison to data obtained by using the full numerical procedure. To this end, figure 1
shows the results obtained with the two approaches from the calculation of the spin-wave
frequency of (111)-oriented Ni films with thicknesses of 60Å (the upper two lines) and
30 Å (the lower two lines), respectively. Unless otherwise indicated, we use the following
magnetic parameters taken from a fit to the experimental data of a (111)-oriented Ni film
60 Å thick [10]: γ = 1.917×107 Hz Oe−1, A = 0.73×10−6 erg cm−1, 4πM = 6.03 kOe.
The value of the applied field is always ofH = 1 kOe, the magnitude of the in-plane wave
vector isq‖ = 1.73× 105 cm−1 and the values of the anisotropy constants are reported in
the caption of figure 1. For both films the conditionq‖L � 1 is satisfied. The agreement
between the analytical (continuous line) and the numerical (dashed line) calculations is,
however, better for the thinner Ni film,q‖L = 0.052, where the data almost superimpose,
than for the thicker film,q‖L = 0.104, where an appreciable frequency difference, which
exceeds the Brillouin experimental resolution, is observed. The observed discrepancy of
the curves is mainly caused by the approximations made when the terms containing the
productq‖L are expanded in power series to first order in the argumentq‖L [10]. Using the
approximative equation (11) for fitting the experimental data using the anisotropy constant
ks as a fit parameter, one would obtain a value ofks which is 7% greater than the value
obtained by fitting the data using the full numerical procedure. Caution must therefore be
exercised when using the analytical approach, even for very low film thicknesses.
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Figure 2. Spin-wave frequencies as functions of the layer thickness for single-crystal Ni (100)-
oriented (continuous line), (110)-oriented (dashed line) and (111)-oriented (dotted line) layers.
All of the curves are calculated by the full numerical procedure described in the text, taking
φ = 0 and assuming the out-of-plane anisotropy constants at the two film interfaces to be equal:
ks = 0.375 erg cm−2.

4. Results and discussion

In figure 2 we plot the calculated spin-wave frequencies for Ni (100)-, (110)- and (111)-
oriented films as functions of the film thickness. In addition to the surface Damon–Eshbach
(DE) mode, a large number of bulk standing modes, characterized by their typical 1/L2

behaviour, are visible. While the bulk modes have almost the same thickness dependence,
thus being insensitive to the crystal orientation, differences in the DE spin-wave frequency
can be observed when the film thickness is reduced below 200Å. In this condition,
interface anisotropy greatly influences the spin-wave frequency, giving rise to an appreciable
difference between the principal crystal orientations. These frequency differences are due
to the fact that, although the anisotropy constants used to calculate the curves of figure 2
are the same for the three crystal orientations, they enter in different ways in the expression
for the interface anisotropy fields (see table 1). In particular, it is well known that the large
increase of the frequency of the DE mode, which takes place for Ni film thicknesses lower
than 60Å, is typical of this interface-anisotropy-dominated mode [3]. Another interesting
aspect of the spin-wave dispersion curves is the mode repulsion at the branch crossing where
the surface and the bulk spin waves interact, interchanging their mode characters.

We now analyse in more detail the spin-wave frequency dispersion as the magnetization
direction is varied in the film plane. The main differences between cubic films with different
crystallographic orientations will be discussed and information will be gained about the
best conditions for determining interface anisotropy constants. For the simulations which
follow, the applied field is of 1 kOe and we have throughout kept the volume anisotropy
constant fixed to the value [17]K1 = 5.1× 104 erg cm−3 and the out-of-plane anisotropy
constant fixed to the valueks = 0.375 erg cm−2. Figure 3 shows the spin-wave dispersion
of the Damon–Eshbach mode as a function of the angleφ for the principal planes of
a Ni film that is 200Å thick. All of the curves are calculated by means of the full
numerical procedure described in section 2, with the in-plane interface anisotropy constant
kp set to zero. Therefore the directional dependence of the spin-wave frequency is only
caused by the magnetocrystalline bulk anisotropy in the simulations. Maxima in the spin-
wave frequencies indicate easy directions of the magnetization. For the (111)-oriented
film, the frequency shows a sixfold periodicity which reflects the in-plane layer symmetry,
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Figure 3. Spin-wave frequencies for the principal planes of a cubic crystal as functions of the
angleφ for an applied magnetic field of 1.0 kOe. The in-plane anisotropy is set to zero at both
film interfaces.

Figure 4. Spin-wave frequencies for (111)-oriented cubic crystal as functions of the angleφ

for film thicknesses of 200̊A, 100 Å and 50Å.

and the amplitude of the frequency oscillation is greatly reduced with respect to those
relating to the (100)- and the (110)-oriented films. For these last two orientations, the
fourfold and twofold angular periodicities result from the respective symmetries of the bulk
anisotropy fields [8]. Our calculations indicate that the experimental determination of the
in-plane anisotropy constants from the spin-wave frequency dispersion is very difficult for
thick Ni(111) films since the frequency dispersion with the in-plane angle is comparable
with or lower than the typical Brillouin scattering resolution ('0.3 GHz). This type
of measurement becomes more feasible in the case of ultrathin films since the interface
anisotropy constantkp, converted into an effective volume anisotropy field, yields a large
contribution to the angular dispersion of the spin-wave frequency. To illustrate this aspect,
the calculated angular dispersion of the spin-wave frequency for a (111)-oriented Ni film
that is 200Å thick is compared in figure 4 with that of Ni films of lower thicknesses
(100 Å and 50Å). The curves are calculated assuming the interface anisotropy constants
kp = 0.15 erg cm−2 and ks = 0.375 erg cm−2. The peak-to-peak frequency amplitude,
which essentially depends onkp, increases from about 0.2 GHz, for the thick films, to
approximately 1.4 GHz, for the Ni film that is 50̊A thick. This is within the range
of sensitivity of a typical BLS experiment. Results of the analysis of the directional
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variation of the spin-wave frequency of Ni films 25̊A, 30 Å and 60Å thick are reported
elsewhere [10].

5. Conclusions

We have studied the dispersion of dipolar (Damon–Eshbach modes) and exchange-dominated
spin waves for in-plane-magnetized thin and ultrathin cubic films with (111) crystal orient-
ation. A quantitative comparison between the results of the complete numerical approach
and those obtained using a simplified analytical expression valid in the ultrathin-film limit
has shown that even for a Ni film as thin as 60Å a suitable correction of the out-of-plane
anisotropy constantks has to be made in order to achieve a reasonable consistency of the
data. The results obtained for the (111) orientation have been compared with those relating
to the other principal planes of a cubic crystal. It has been shown that while the frequency
variation versus the angleφ in thick films is rather small, this variation increases in ultrathin
films because of the greater contribution given by the in-plane anisotropy energy which is
converted into an effective volume anisotropy. We believe that the results presented in this
paper will stimulate further BLS investigations of the magnetic anisotropy on the (111)
planes of ultrathin films and multilayers.
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Appendix

Referring to the equations contained in reference [1] as equations (An) wheren indicates the
equation number, we list the refinements of those expressions which enter in the spin-wave
frequency calculation for a cubic crystal with (111) orientation:

Mhy +
(

iω

γ
−Hγ

)
mx −

[
H +Hβ + 2

A

M
q2

]
my = 0 (A13)

−Mhx +
[
H +Hα + 2

A

M
q2

]
mx +

(
iω

γ
+Hγ

)
my = 0 (A14)

dEani
dαx

= Hαmx +Hγmy (A16)

dEani
dαy

= Hγmx +Hβmy. (A17)

On introducing the effective fieldsHa andHb which are defined in reference [8], the secular
equation assumes the following form:[

ω2

γ 2
+H 2

γ −HaHb
]
q2− 4πM[Hbq

2
x +Haq2

y − 2Hγ qxqy ] = 0. (A22)

It can be converted into a polynomial equation:
6∑
i=0

aiq
i
x = 0
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with the following coefficients:

a0 = q6
‖ +

M

2A
(2H +Hα +Hβ + 4πM)q4

‖

+
(
M

2A

)2[
(H +Hβ)(H +Hα + 4πM)−H 2

γ − 8πAq2
z −

(
ω2

γ 2

)]
q2
‖

+ 4πM

(
M

2A

)2

[(Hα −Hβ)q2
‖ − (H +Hα)q2

z ]

a1 = −8πMHγ qy

(
M

2A

)2

a2 =
{

3q4
‖ + 2q2

‖

(
M

2A

)
(2H +Hα +Hβ + 4πM)

+
(
M

2A

)2[
(H +Hβ)(H +Hα + 4πM)−H 2

γ − 8πAq2
z −

ω2

γ 2

]}
a3 = 0

a4 =
[

3q2
‖ +

(
M

2A

)
(2H +Hα +Hβ + 4πM)

]
a5 = 0

a6 = 1.

Also,

ui = M

D

[
Hb − qy

qxi

(
iω

γ
+Hγ

)]
(A26)

vi = M

D

[
Ha − qy

qxi

(
iω

γ
−Hγ

)]
(A27)

where

D = HaHb −H 2
γ −

(
ω2

γ 2

)
andA is the exchange stiffness constant.

The Rado–Weertman boundary conditions calculated at the two film surfaces become

6∑
i=1

[(MHα′ − 2iAqxi)ui +MHγ ′vi ]hxi = 0 (A37a)

6∑
i=1

[(MHα′ + 2iAqxi)ui +MHγ ′ui ]hxieiqxiL = 0 (A37b)

6∑
i=1

[MHγ ′ui + (MHβ ′ − 2iAqxi)vi ]hxi = 0 (A38a)

6∑
i=1

[MHγ ′ui + (MHβ ′ + 2iAqxi)vi ]hxie
iqxiL = 0. (A38b)

All of the quantities which appear in the previous equations reduce to those reported in
reference [1] whenHγ = 0 andHγ ′ = 0. In the original paper there was a misprint in
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equation (34), whose correct form is

6∑
i=1

(1+ 4πui)hxie
−iqxidn − hex1e−q‖dn − hex2eq‖dn = 0. (A34)
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